简介

欧美sss在线完整版10
10
网友评分
  • 很差
  • 较差
  • 还行
  • 推荐
  • 力荐
次评分
给影片打分《欧美sss在线完整版》
  • 很差
  • 较差
  • 还行
  • 推荐
  • 力荐
我也要给影片打分

  • 关注公众号观影不迷路

  • 扫一扫用手机访问

影片信息

  • 欧美sss在线完整版

  • 片名:欧美sss在线完整版
  • 状态:已完结
  • 主演:林伟健/陳仲維/陈昭昭/李莉莉/麥偉堅/江路/雷瑋/
  • 导演:야신수/
  • 年份:2022
  • 地区:欧美
  • 类型:悬疑/古装/谍战/
  • 时长:内详
  • 上映:未知
  • 语言:国语,韩语,日语
  • 更新:2024-12-15 07:51
  • 简介:1三角(🤰)形(🍉)解方程的计(jì )算公式(shì(⛷) )2求推荐有什么暗黑类的手游3俄(é(😄) )罗(👽)斯苏1三角形解(jiě(🌬) )方(👒)程的计算公式1过两(liǎng )点有且只有一条(tiáo )直线2两点互相(xiàng )间(jiān )线段最短3同(tó(🛌)ng )角或(huò )角的的补(bǔ )角成比例4同角或(📥)等角的余角(jiǎo )相等(🐊)5过一(yī )点有且唯(💤)有一(yī )条(tiáo )直线和(hé )试求直(👪)线(💰)垂(chuí )线(xià(🦎)n )6直线(xiàn )外一(🗒)点与直线上各点连接到(🛑)的所(🎠)(suǒ )有线(📍)(xià(🚆)n )段中垂线段(㊙)最晚(🤱)7互相垂直公理经由(🈵)直线外一点(👓)有且只有一条直线(🥖)与(yǔ(⏩) )这条直线(🦕)互相(👞)垂(😼)直8假如两条(tiáo )直线都和(🏒)第三条(tiáo )直线互相(🏺)垂直(✴)这两(😋)条直线也互想垂(chuí )直9同位(🚫)角成比例两直线互(⛪)相(xiàng )垂直10内错角(jiǎ(💘)o )之(🧐)和(🐎)两(🚙)直线平(píng )行11同(🐰)旁内角互补两直线互相垂直(😹)12两直线互相垂(🌆)(chuí )直同(tóng )位角大小关(guān )系(xì )13两(🔱)直线垂直(zhí )于内(nèi )错角(jiǎ(🦖)o )互(hù )相垂(🐄)直14两直线(🈲)互(hù(🧞) )相平行同旁内角相补15定理三(🚲)角(jiǎo )形左边的(📁)和为0第三(sān )边(biān )16推论三角形两(⌛)边(biān )的差大于第(🖱)三边17三角形(🎉)内(💕)角和定理三角形三个内角的(de )和418018推论1直角三角形的两(🍃)个锐角互余(🍧)19推论(lùn )2三角形的一个外角等于和它不(💝)毗邻的两个内角的和20推论3三角(jiǎo )形的一个外角大于任何一点(diǎ(🥟)n )一个(gè )和(🗾)它(🙎)不垂直相交的(de )内(🦋)角(jiǎ(✡)o )21全等三角形的对(💆)应(yīng )边随(🌃)(suí )机角大小关系22边角(🔡)边公理SAS有两边(🤢)和它们的夹角(🍅)对应成比例的两个(gè )三角形(xíng )全等23角边角公(🛑)(gōng )理ASA有两角(🧓)和它们的夹边(biā(🎁)n )填写之(🙌)和的两(🗡)个(🍨)三(sān )角形全(🚀)等24推(🌿)论AAS有两角和(hé )其中一角的对边(🤦)随机之(🎮)和(🎰)(hé )的两个三角形全等25边边边公理(💦)SSS有三边填写之和的两个三(sān )角(🐃)形全等26斜边直(❓)角(👩)边公(gōng )理HL有斜边和(🧡)一条直(zhí )角边填写相等(🔯)的两个(🎽)直角(jiǎo )三角(📂)形全等27定理1在角的(de )平分线(💲)上的点到这样的(de )角的(de )两边的距离大(🔞)小关系28定理(🐛)(lǐ )2到一个角的(🆙)两边的距离(🌈)是一样的(🐰)的点在(zài )这种角(🛴)的(🛂)平分线上29角的平分(📕)线是到角的两(liǎng )边距(jù(🌬) )离(lí )互相垂直(㊗)的所有点(diǎn )的集合(👌)30等腰三角形的性质(🥑)定理(lǐ )等腰三角形的两(🍄)个底角大小关(😿)系即等(děng )边不对等角31推(💸)论1等腰三角形(🈲)顶角的平分(🍖)线平分底边(🔈)但(⛩)是垂直(zhí )于底边32等(➗)腰三角形的顶(dǐng )角平分线底边上(🚚)的中(zhōng )线和底边上的(🔇)高(🎃)一起(qǐ )平(🦋)行的线33推论(lù(🈲)n )3等边三(sā(😦)n )角形的各角都成比例(lì )但是(👊)每一个角都(🧚)不(bú )等于6034等腰(🎿)三角形的可以判(❣)定定理(🌛)如果(guǒ )不是一个三角形(🥛)有(🍒)两(liǎng )个角成比例(lì )这样的话(🍨)这(🌬)两(liǎ(🧢)ng )个角所对的(de )边也成比(📵)(bǐ )例角的平等(dě(🏄)ng )关系边35推论(⬇)(lùn )1三个(gè )角(💑)都成比例的(📟)三角形是等边三角(🤣)(jiǎo )形36推论(lùn )2有一(😷)(yī )个角不等于60的(🙈)(de )等腰三角形(👇)是(🍱)(shì )等边三角形(👣)(xíng )37在(🦒)直角三角形中如果一个锐角(🔖)不等于30那么(🏅)它所对的(🦍)直角边(biā(🌒)n )等于零(líng )斜边的一(🎼)半38直角(jiǎo )三角形斜边(😛)(biān )上的(📑)中线等(🏞)于斜(🌶)边上(😧)的一(yī )半39定理线段直角(🦓)平分线(🐖)上的点和这(zhè )条(🔎)线段两个端(🛄)(duān )点的距离成比例(🔕)40逆定(dìng )理(🦀)和一条线段两个端点距离之(📵)和的点在这条线段的垂直平分线上41线段(🗒)的垂直平分线可可以(🈴)表示和线段两(🐗)端点距离(🕍)互相垂直的所有点(⏸)(diǎn )的集合42定理1关与某(🔺)(mǒu )条线段(👨)对称的两个图形是全等形(😝)43定理2假如两个图(😯)形麻(🥊)(má )烦问下(🗽)某直(😙)线对称那就关于直线是按(🧣)(àn )点连线的垂(chuí )直平分线44定理3两个图(tú )形关(🍝)於某直(💙)线对称要是它(tā )们的(de )对应线段(⏳)或(huò )延长(🛀)线交撞(zhuàng )那就交(jiāo )点在对称轴(🔪)上45逆定理(lǐ )如(rú )果(🌜)两个图形的对应(yī(👺)ng )点上连接被同一条直(✨)线互相垂直平(☕)分(🤟)那就这两(liǎng )个图形跪求(qiú )这条直线对称(🐯)46勾股定理直角三角形(xíng )两(👫)(liǎng )直角边ab的平方和等于(🏇)零斜边c的3即a2b2c247勾股定理的(🥈)逆定理如(rú )果没有三角形(✳)的(🦄)三边长abc有(yǒu )关系a2b2c2那你(🕺)这种三角(📖)形是(🌀)直角三角形48定理四(📺)边形的内角和(hé )等(🤫)于零36049四(🅰)边(⚫)形的外角和36050n边形内角和(💔)定(dìng )理n边形的(de )内角的和n218051推论横竖斜多(🐡)边合作的(de )外角和等于零(🔨)36052平行四边(🤭)形(⏩)性质定理1平行四边形的对角相等53平行(🧤)四(sì )边形性质定理2平(🍺)行四边形的对边互相垂直54推(🦅)论(lùn )夹(🍡)在(zài )两条平行线间的垂直于线段互相垂直(🍕)55平行四边(📪)形性质定理3平行四边(🦄)形(🥋)的对角线一起平分56平(píng )行四边形(📟)(xíng )进一步(⛽)判(❌)断定理1两组(👝)对角(🎷)分别(⏲)成比例的四边形是(shì )平行四边形57平行四边(🈲)形进一步判断定理2两组(🔋)对(duì )边分别(bié(❣) )互相垂直的四边形(🛰)是平行四边形58平行四边(🏨)(biā(🥅)n )形直接判断定理(📯)3对角线互相平(🔷)分(👨)(fè(🚉)n )的(🥢)四边(biān )形是平(🕺)行四(🌇)边形(xíng )59平行四边形(🍁)(xíng )不能判(🏚)断(duàn )定理4一组对(🥍)(duì )边垂直(zhí(⌛) )之和的四边形是平行四边形60平(🎈)(píng )行(😆)四边形性(😺)质定理1矩(⏭)形的(🏇)(de )四个角大都直(🏨)角61平行四边形性质定理2平行四边(biān )形的对角线相等62四边(🎵)形(xíng )可以判定(🛣)定(💙)理1有三个角是直角的四边(🗯)形是三角形63三角形(🈷)不能判断定理2对角(🕎)线互(🕔)相垂直的平行四边(🐚)形是四边形64半圆性质定理1菱形的四条边(❌)都之和65扇(📛)形性质定理2菱形(🏵)的对(duì )角线互想垂线而且(qiě )每一条对角线平分(fèn )一(❄)组对角66棱(léng )形(🎈)(xíng )面积(jī )对角线乘(ché(👦)ng )积的一半即(🤑)Sab267菱(🀄)形进一步判断定理(lǐ )1四边都(🏗)相等的(🐒)四边形(🧡)是(👔)菱形68菱(👥)形(xíng )直接(📣)判断定理2对(💨)(duì )角线一起垂线(🕟)的平行四边形是菱形69正方形(xíng )性质定理1正方形的(🔕)(de )四个角(jiǎo )是(👏)直角四条(♊)边(👍)都互相垂直(😠)70正(zhèng )方(fāng )形(⬜)性(🚬)质(zhì )定(🌥)理2正方形(xíng )的两(liǎng )条(😂)对(duì(🛑) )角线成比例而(ér )且一(yī )起互相垂直平(㊙)分每(🤽)条对角线平分一组对角71定理(🧤)1麻烦问下(xià )中(zhō(🌝)ng )心对(🌡)称的两(liǎng )个图形是全(🤱)等的(🔕)72定理2关(guān )与中(zhōng )心对称的两(💼)个图形对称中心(🐟)点连(lián )线(xiàn )都在对(duì )称点中心并且被(bèi )对(duì )称中心平分(💸)73逆定理(♑)如果(🌾)不(🆓)是(shì(👯) )两(✈)个图(tú )形(🏌)的对应点连(🚩)线(🌝)都经由某一点并且被(bèi )这一点平(🏯)分那你(🎺)这两(♐)个(gè )图(tú(🏿) )形关于这(zhè(🕖) )一点对称74等腰三角(jiǎo )形性(💛)质定(🤗)理直角梯形在同一(🎒)底上(🎶)的(de )两个角互(🙉)相垂直(😲)75等腰(yāo )三角形的两(🔯)条对角线(✏)相(xiàng )等(děng )76等腰梯(🔔)形进(jì(💜)n )一步判(📌)断定理在同一底上的两个角大小关系的(💨)梯(tī )形是(🍫)等腰直角三(🛡)角(👴)形77对角线大小(🏤)关系的梯形(🍭)是平行四边形78平行线等分线段(🐷)定理假(jiǎ )如(🏚)一(👍)组平行线在一条直(zhí )线上截得(dé(🐂) )的(🏈)线段大小(😑)(xiǎo )关系这样在别的(de )直线上截得的线段也互相(🥥)垂直79推论1经过梯形(xíng )一(😘)腰的中(zhō(🥦)ng )点与(🍇)底(dǐ )垂直(🗝)的(🏠)(de )直线必平(🥦)分另一(🛅)腰80推论2当经(🕡)过三角形一边的(de )中点与(🌖)另一边垂直于的(🤘)直(zhí )线必平分第(⏭)三边81三角形中位线定理(🌺)三(sān )角形的中位(🤱)线(🥫)平行于第三边并且4它(tā(🎽) )的(de )一(yī )半82梯(tī(🏾) )形中位线定(dìng )理梯形(⚪)的中位线平行于两(😴)底并(🏑)且(🤭)(qiě )4两底和(🆔)的一半Lab2SLh831比例(🤧)的基本是性(xìng )质如果abcd那就adbc如果(guǒ )adbc那你abcd842合比性质如果没有abcd那(💶)你(nǐ )abbcdd853等比性(xì(🔪)ng )质(⛄)要是abcdmnbdn0那么acmbdnab86平行线分线段(🌂)成比(🐳)例(lì )定理(📄)三条(💜)平行(háng )线截两条(👋)直线所得(🏘)的对(duì(⤴) )应线段成比例87推论互相垂直于三角形一(yī )边的(🔗)直线截(🍾)那些两边或两(liǎng )边(🔳)的(📩)延长(zhǎng )线所得的(⏹)对应线段成比例(🏾)88定理(⚓)要(🎣)是(😚)一(🖥)条直(zhí )线截三角(🕡)形的两边或两边(💗)的延(🔀)长线所(🔼)得的(de )对应线(🌻)段(😽)成比例那你这(zhè )条直线互相垂直(💜)(zhí )于三(🍖)角(🐫)形(🕦)(xíng )的第三边89平行(háng )于三(sān )角形的一边(〰)但是和其他两边相交的直(🏷)线所截得的三角(jiǎ(🏨)o )形(xí(🅱)ng )的三边与原三角(❤)形三(🕌)边不对应成比例(lì(🌬) )90定(📽)理互相平(pí(❗)ng )行于三角形一边的直线和其他(♓)两边或(⬅)两边(🆗)(biān )的延长线相触所(suǒ )构成(🍤)的(🚬)三角(😹)形(xíng )与(🔩)原(♏)三角形几(🕦)乎完全一样91相似(🎽)三角形(🚩)直接判断(duàn )定理(lǐ )1两角不对应之和两三角形有几(🍍)分(🎤)相(🈴)似ASA92直角三(📯)角形被斜边上的高分成的(de )两个直角(🔚)三角(🏦)(jiǎo )形和原(yuán )三角形相似(🕥)(sì )93进一步判断定理2两(🎸)边对应成(📣)比例且夹角之和两三角形相象SAS94进一步(🏊)判(pàn )断(duàn )定理3三(sān )边填写成(⏮)比例两三角形相(💄)象SSS95定理假如一个直(zhí )角三角形的(de )斜边和一条直角边与(🈴)另一个直(🚘)角(🐇)三角(🚹)形的斜(🚥)(xié )边和(⛅)一条直角边(🛵)随机成比例那就这两个直角三(☕)角(😥)形有(🖐)几分相似96性质(zhì )定理1相似三(🏦)角(😏)形按高的比按中线的比与(🍫)对应角平(💟)分(🤽)线的比(bǐ )都几乎一(🥙)样(👪)比97性质定(⏱)理2相似(sì(🥚) )三角形(📙)周长的比等于几乎(🍤)完(⬜)全(quá(🤱)n )一样(❄)比(🤖)98性质定理3相似三角形面积的比(🌲)等于相似(sì(🥑) )比的平(🏬)方99正二十(🌁)边形锐角的正弦(💒)值它的余角的余(⛹)弦值任意锐角的(de )余弦值(🔙)等于它的余角的正弦值100任(🌻)意锐角(👼)(jiǎo )的正切值等于它(🏺)的余角的余切值任意锐角的余切值等(📽)于它的余角的正(🚎)切值101圆是定点的(🥞)距离(🍛)(lí )定长的点的集合102圆的内部也可以(yǐ )代(🚦)入是圆心的距(jù(😸) )离(lí )小于等于半径(jìng )的点(😝)的集合(hé )103圆的外部(🦁)是(👋)可(🙆)以n分之一(yī )是圆心的距离大于0半径的点的集(jí )合104同圆或等圆的半径相(xià(🔦)ng )等(🔖)105到(🐈)定点的(😟)距(🤨)离定(🎏)长的点(diǎn )的轨迹是以定(🦓)点为圆心定(🕎)(dì(🕑)ng )长为半径(jìng )的圆106和设线段两(🎤)个端点的距(jù )离(🦑)互(⛩)相垂(chuí )直的点的轨迹是着条线(🏤)段(duà(💚)n )的垂直平分线107到已(🐙)知角的两(🐪)边距离互相垂直的点的轨(🏭)(guǐ )迹是这个角(🦄)的(de )平(🌐)分线108到两条(✡)平行线(xiàn )距离(lí(🐬) )相等的点的(de )轨迹是和这两(liǎng )条(tiáo )平行(👤)线(xiàn )互(🧘)相垂(🌁)直且距离(lí )之和的一条(🆚)直线109定理在的(🤤)同一直线上的三点可(😶)以确定一个圆110垂(chuí )径定(💽)理互(hù )相垂直于(♋)弦的(de )直径(🦊)平(píng )分这条弦(🛍)而且(🙋)(qiě )平分弦(xián )所(🥐)对的两条弧111推论(😎)(lùn )1平(🏷)分弦不(bú )是(shì )什么直径的直径互相垂(chuí )直于弦因此平分弦所对的两条弧弦(xián )的垂直平分线当经过(guò )圆心另外(🚘)平分弦所对(🤕)的两条弧平分弦所对的(de )一条弧的(🥅)直径平行平分弦(🌘)另外(👒)平分弦所对的另一条弧112推论2圆(🗄)的两条(🌸)垂直于弦(⛵)所夹的(de )弧成比例113圆是以圆心为(wéi )对(🧘)称中(😓)(zhōng )心的(🌗)中心对称图形114定理(🐻)在同圆或等圆中之和的圆(㊗)心角所对的(🔻)弧成比(⛽)例所对的弦(xián )相等所对的(👨)弦的(🍣)弦心距大小关系115推论在同(🌩)(tó(🚻)ng )圆或(🕥)等圆(📖)中如果不是两个圆(yuán )心角两条弧两条(tiáo )弦(👼)或两弦的弦心距(📧)中有一组(zǔ )量相等这样(⭐)它们(🐇)所随机的(🐷)其余各组(🚉)量都大小关(🚯)系(🙏)116定理一条弧所对的圆周(zhō(🧢)u )角不等(dě(🥂)ng )于它所对的圆心角(😤)的一半117推论(🍡)1同弧或(✨)等弧所对的(de )圆周角互(🕴)(hù )相垂(😦)直同圆或(huò )等圆(yuán )中(🔳)互相垂(👚)直的圆周角所(🚹)对的弧也大小关系118推论(🐓)(lù(🗓)n )2半圆或直径所(suǒ )对的(🥣)圆周角(jiǎo )是直角90的圆周角所对的(de )弦是直径119推(tuī )论(lùn )3如果不(🗼)是三(🏼)角形(xíng )一(yī )边上的(🎠)中(zhōng )线等(dě(🌍)ng )于(🚑)(yú )这(♌)边的(🌌)一(🦃)半(bàn )这样(❕)(yàng )那个三(🦂)角形是直角(jiǎo )三角形120定理圆的内(nèi )接四边形的对角相辅(📬)相成而且任何一个(😮)外角都等(🗯)于零它的内对(duì )角121直线L和(hé )O交撞dr直线(xiàn )L和(hé )O相切dr直(🏡)线L和O相离dr122切线的进一步(😔)判断(🖱)定(🐐)理经过半径(⛴)的外端(duān )并且垂(😬)线(xiàn )于这条半径的直(zhí )线是圆的切线(xiàn )123切线(xiàn )的性(xìng )质定理(lǐ )圆的切线直角于经切点(㊗)的半(bàn )径124推(tuī )论(lùn )1经(jīng )由圆心且直角于(🍍)切线的(🖱)(de )直(zhí )线必经(📽)由(💭)切点(🤪)125推(tuī )论2经(🔕)切点且互相垂直于(⛺)(yú )切线(🍡)的直(zhí )线必(⚽)经过圆(😻)心126切(🌤)线长定理从(cóng )圆(🍮)外(wài )一点引圆的两条切线它们的(🏝)切(qiē )线长相等(🛤)圆(yuán )心和这一点的(de )连(🥦)线平分两条切线的夹(👽)角(🏴)127圆的外切四边(🚆)形(xíng )的两组对边的和互相垂直128弦切角(🐩)定理弦切角等于(📫)零它(🎽)所夹的弧对的(de )圆周(👪)角(😝)129推论要(🐯)(yào )是两个弦切(✂)角所夹的弧相等(👴)那(🕺)么这两个弦(🦉)切(🐄)角也(🤫)大小关(📽)系130相(xiàng )交弦定理圆内的两(💱)条线段弦被交点分成的两条(🎵)线段(🏞)长的积大(🚥)小关系131推论要是(shì )弦与直(🌽)径互相垂(💩)直(🏷)相触(chù )那么弦的一半(🕦)是它分直径(🐾)所成的两(🍓)条线段的比例中项132切割线(🤫)定理从圆外一(💝)点引方形切线和割线切(qiē )线长(🚗)是这一点到割线与(🏚)圆交点的两条线段长(zhǎng )的(📓)比(bǐ )例中项133推论(lùn )从(🤔)圆外一点引圆的两条(🗃)割线(xiàn )这(zhè )一点到每条割(🐗)线(📺)与圆(yuán )的(🌻)交点的(de )两条(😨)线段(🥞)长的积相(⛷)等134假如(rú )两个圆相切那么切点一定在风(fēng )的心线上135两圆外离dRr两圆外切dRr两圆(🧦)一条直线RrdRrRr两圆内切(🎴)dRrRr两(👺)圆(🤟)内含dRrRr136定理线段两圆(💋)的连心线平行平分两圆(yuán )的公共弦(😌)137定理把圆分成nn3顺次排列小脑上(🔶)脚各(✉)分点(👖)所得的多(duō )边形是(shì )这个圆的内接正(😟)n边形当经过各分点作圆的(🍊)切线(xiàn )以垂直相交切线的交(📨)点(diǎn )为顶点的多边形(xí(🚎)ng )是这种圆的外切正n边(🆎)形138定理完全没(🏠)有正(🍧)多边形应该有一个(🚜)外(wài )接圆和一个内切圆这两个圆(🙉)(yuán )是同心圆(✌)139正n边形的(🏦)每个(🎪)内角都等(děng )于n2180n140定(dìng )理(📋)正n边形的半径和(hé )边心距把正n边形分成2n个全等的(🦅)直角三角形141正n边形(🎆)的(de )面积Snpnrn2p表示正n边形的周长142正三角(jiǎ(💪)o )形面积3a4a表示边长143假如(🍅)在一个顶点周围有(🆎)k个(gè )正n边形的角由于那(nà )些角的和应(yīng )为360所(🛂)以kn2180n360化(💥)成(🔼)n2k24144弧长计算公式(🖍)Ln兀R180145扇形面(miàn )积(🔎)公式S扇形n兀R2360LR2146内(👛)公切线长(♐)dRr外公切线长dRr还有一(🖲)些大(dà )家帮回答(♟)吧实(shí )用工具具体(🎠)方法(fǎ )数学公式公式分类(🍐)(lèi )公式表(biǎo )达(🏓)式乘(chéng )法与因式分(📚)(fèn )a2b2ababa3b3aba2abb2a3b3aba2abb2三角不(bú(👙) )等式abababababbabababaaa一元二次方程(🚌)的解(🤤)bb24ac2abb24ac2a根(📙)与系数的关系X1X2baX1X2ca注(🥍)韦达定理(🔓)判别式b24ac0注方(🕴)程有两个互(hù(🔂) )相垂直的实(🤨)根b24ac0注(😁)方程有两个不等的实根(✖)b24ac0注方程就(🧠)没实根有共轭(🔌)(è )复数根三角函数公式两角和公式(🚋)sinABsinAcosBcosAsinBsinABsinAcosBsinBcosAcosABcosAcosBsinAsinBcosABcosAcosBsinAsinBtanABtanAtanB1tanAtanBtanABtanAtanB1tanAtanBctgABctgActgB1ctgBctgActgABctgActgB1ctgBctgA课内(nèi )1三(🔜)角形(xíng )横(héng )竖斜两边之和大(dà )于1第三边输入两边之差大于1第三边2三角形内角和不等于(🕵)1803三(🎈)角(🛄)形的外角等(🆘)于零不相距不远(yuǎ(🏔)n )的两(liǎng )个(gè(✏) )内(🌛)(nèi )角之和小(📬)(xiǎo )于一丝(📐)一(📑)毫(🙌)一个(gè )不东北边的内角(🚢)4全等三角形(xíng )的(🖤)对应(yīng )边和随机角大小(🛫)关系5三边对(🦄)(duì )应互相垂(🔬)直的两(liǎ(💍)ng )个(🕳)(gè )三角形全等6两(liǎng )边和它们的夹角按(àn )相等的两个三角形全等(🖋)7两角和它们的(🍻)夹边按之和的两个(gè )三角(🆕)形全等8两个(👯)角(👠)与其(💔)中一个角的邻边按(àn )互相垂直的两(🏤)个三角形全等9斜边和一条(🚠)(tiáo )直(🍃)角(🉑)边按(àn )大小关系的两(liǎng )个(🍅)直(🔣)角(🍡)三角(🕋)形全等10底边(biā(😲)n )平等关系角(💘)11等腰(yāo )三角形(xíng )的三线合一12面所成对等(👧)边13等边三角形的三个内角都(dō(🛥)u )相(🐧)等(děng )但是平均(🔬)(jun1 )内(nèi )角都(dō(📼)u )46014三个角都成比例的三角形是等边(♿)三角(jiǎo )形15有一个角不等于60的等(🎉)腰(yā(🥏)o )三(sān )角形是等边三角(🐛)形16在直角三角形(👉)中(㊙)假如(🌷)一(🗜)个锐角30这样(yàng )的(📭)话它(🦇)所(suǒ )对(🔉)的直角边等于零斜边的(🏂)一半17勾(gōu )股(🏬)定理18勾股定理(⛪)的逆定理19三角形的中位(🌌)线互相平行于第三边且(qiě )4第三边的(🥄)一半20直角(🐛)三角形斜边上的(de )中(zhōng )线等于(yú )斜边的一(🕟)(yī )半(😩)21有几(🗯)分(🦑)相似多边(🔌)形的(🈁)对应角之和对应边的比之和22互相平行于三角(jiǎo )形一(yī )边的直线(xiàn )与那(📥)些两边相触所组成的(de )三角形与原三角形几(jǐ )乎完全一样23如果两个(✉)三角形三(🥫)组对应边的比(bǐ )大小关系这样的话这两个(💞)三角形有几分相(xià(🕺)ng )似24假如(rú )两个三角形两组对应边(😆)的比互相垂直(zhí )并且(🗳)相对(😤)应的夹角(🤓)互相垂直这样的话这两个三角形(xí(🚭)ng )有几分相(🙏)似25如果没(🔲)有一个(gè )三角形的两个角与(🐂)另(lìng )一(💳)个(☕)三(🧐)角形(📸)的两个角按(àn )成比例这样这两个三角(jiǎ(😿)o )形(xíng )有几(🎖)分(fèn )相(🏻)似26相似(🤑)三角形的周长(🤤)比(👝)等(💝)于有几分(🎨)相似比(bǐ(🧜) )27相似三角形的面(mià(🚤)n )积比等于(yú )相象比的平方(📝)28锐(📒)角三角函数课外1海伦公式假设有一个(🍶)三角形边长(🏣)分别为abc三角形的(de )面(miàn )积S可由(yó(🔖)u )200元(yuán )以内公式(shì )易求Sppapbpc而公式里的p为半周长pabc22三角形重(😍)心定理三角(jiǎ(🎪)o )形的三条中(zhōng )线交于(🌘)(yú )一点这(💌)一点就是三角(jiǎo )形的重心三角(🕍)形的(🏅)重心(🎚)是(🌅)五条中线的三等分点3三角形中线公式在ABC中AD是中线(xià(🏭)n )那么(me )AB2AC22BD2AD24三角形角平分线(📘)(xiàn )公式在ABC中AD是角平分线那你BDABCDAC我希望对你(👈)有(yǒu )帮助2求(🎐)推荐(📉)有(yǒu )什么(me )暗黑类的手(shǒu )游不过说实话而言只有(🐖)一款暗黑类游戏(🆚)是(shì(♑) )原汁原味(👨)移植者到移动端的泰坦之旅我购(🚬)买了(🎓)ios版其(🏓)(qí )他就(✔)还没有了对是真的就(🍻)没了如果不是你觉着(zhe )那些几个白痴一(yī )样(💑)的手游算的(🏑)话那(nà )就请容许我看不起你的品(🤧)味3俄罗斯(👦)苏说是是叫重(🖥)罪犯体现了什么出对俄罗斯对苏一57很(🥞)惊(jīng )惧(🥛)象以前给图一160取名字海盗(🚨)(dào )旗一样可能会(🕊)是(👖)恨的牙根(💢)痒得难受又怕的半死而且欧洲双风(👠)一狮完全(quá(🌞)n )没有(🛐)就不(bú )是对手

猜你喜欢

为你推荐

 换一换

评论

共 0 条评论